Theo chương trình học, các bạn sẽ được học hình học phẳng trước khi làm quen với hình học không gian. Việc nắm chắc tất cả các định lí, công thức, cách vẽ thêm đường phụ,.. đối với hình học phẳng là điều không thể bỏ qua, vì khi bước vào phần hình học không gian, nếu bạn không nắm chắc những kiến thức của hình học phẳng, thì bạn sẽ không có đủ nền tảng để xử lí phần toán “khó nhằn” này. Việc học sâu phần hình học phẳng cũng tạo tiền đề cho lối tư duy hình học để áp dụng hiệu quả vào hình học không gian.
Phân loại dạng bài
Ít có dạng toán nào mà dạng bài lại đa dạng và phong phú như hình học không gian: tìm giao tuyến của đường thẳng và mặt phẳng, giao tuyến của hai mặt phẳng, chứng minh ba điểm thẳng hàng, ứng dụng của trục đường tròn, mặt phẳng vuông góc,… Các sĩ tử, một phần do tâm lí, phần lại do không hiểu rõ dạng bài, khi đi thi rất dễ bị lúng túng và do đó áp dụng nhầm công thức vào tính toán, chứng minh. Một điều quan trọng khác cho việc học hình học không gian là phân loại những dạng bài được học ngay từ đầu. Đối với mỗi dạng hình học không gian được thầy cô đưa vào bài giảng, bạn nên làm đi làm lại các dạng bài tập tương ứng, và cuối chương trình, nên có một bản tổng hợp dạng bài cùng cách giải. Nếu trên lớp chưa hiểu, bạn có thể hỏi lại gia sư tại nhà hoặc bạn bè của mình. Như thế, bạn sẽ có một nền tảng vững chắc để tự tin dự thi Đại học và làm tốt phần này.
Tận dụng nguồn tài liệu có sẵn
Các bạn cũng có thể tìm tham khảo nguồn sách vô cùng phong phú từ các hiệu sách lớn. Trong đó, hai quyển sách thiết yếu nhưng thường bị bỏ qua là sách giáo khoa Toán và sách bài tập đi kèm. Ngoài ra, bạn có thể tìm thêm một số sách viết theo chuyên đề đáng tin cậy như “Phương pháp giải toán hình học giải tích trong không gian” của thầy Lê Hồng Đức, hay “Hình giải tích” của thầy Trần Phương – Lê Hồng Đức,… Đó là những cuốn sách bám sát vào chuyên đề học ôn thi đại học, hơn nữa đưa ra một vài cách giải khá độc đáo cho nhiều bài,…
Ngoài ra, các bạn có thể tìm kiếm thêm tài liệu trên mạng hoặc hỏi gia sư tại nhà của mình, những người có kinh nghiệm trong việc ôn thi Đại học, họ sẽ giúp bạn lựa chọn được những đầu sách hữu dụng đó!
Hãy sáng tạo
Cuối cùng nhưng không kém phần quan trọng, đó là yếu tố sáng tạo. Bạn không nên nghĩ rằng với môn Toán, chỉ cần “đóng đinh” công thức vào trí nhớ là có thể giải quyết được tất cả các bài tập trong đề thi. Nhớ và biết cách áp dụng công thức là rất tốt và cần thiết, tuy nhiên, đối với hình học không gian, điều đó là chưa đủ. Sự sáng tạo giúp cho việc giải các bài toán hình không gian nhanh hơn, khiến chúng trở nên đơn giản hơn. Đó là cách tư duy trừu tượng, hình dung ra các đường cần vẽ thêm trong hình để định hướng cách giải các yêu cầu của bài toán. Những bạn có tư duy hình học tốt thường có xu hướng giải các bài tập hình học không gian một cách dễ dàng hơn nhiều so với các bạn chỉ áp dụng công thức. Biết kết hợp các bài tập hình không gian đã làm với nhau để áp dụng vào các bài tập mới cũng là một hình thức của sáng tạo trong việc giải toán, do đó, việc làm nhiều bài tập là một điều thiết yếu để hoàn thành dạng bài này.
Tạm kết
“Trái đất vốn làm gì có đường, người ta đi mãi thì thành đường thôi”, các bạn không nên nản chí trước những dạng bài hình không gian phức tạp, mà hãy áp dụng các bí quyết trên một cách khéo léo để có thể đạt điểm số cao nhất cho phần thi này! Chúc các bạn ôn thi Đại học đạt kết quả cao!